J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, January 29, 2025, Prague, Czech Republic

Electrocatalysis as Major Enabling Technology for Decarbonization

Plamen Atanassov

Chemical & Biomolecular Engineering and Materials Science & Engineering National Fuel Cell Research Center University of California Irvine, USA

University of California, Irvine Home to the National Fuel Cell Research Center

Irvine Clean Energy Institute Jack Brower - Director CEI

National Fuel Cell Research Center

UCIrvine UNIVERSITY OF CALIFORNIA

MISSION: to facilitate research, development and deployment of fundamental and applied science for renewable and clean energy technology systems

US DOE H2@Scale and EarthShots

earthshots Hydrogen S DEPARTMENT OF ENERGY Н 1 Dollar 1 Kilogram 1 Decade earthshots Storage™ DEPARTMENT OF ENERGY Reduce storage costs ...in storage systems by 90% from a 2020 that deliver 10+ hours ...in I decade of duration Li-ion baseline... Carbon earthshots Negative™ U.S. DEPARTMENT OF ENERGY ******* CO2 <100 Dollars 1 Ton 1 Decade

SELECTED REGIONAL CLEAN HYDROGEN HUBS

ARCHES Benefits California Communities

*EJ40 database and CalEnviroScreen

* Reduced premature death, asthma, cancer risk, missed work days

Net-zero emissions energy systems

ENERGY

Steven J. Davis^{1,2*}, Nathan S. Lewis^{3*}, Matthew Shaner⁴, Sonia Aggarwal⁵, Doug Arent^{6,7}, Inês L. Azevedo⁸, Sally M. Benson^{9,10,11}, Thomas Bradley¹², Jack Brouwer^{13,14}, Yet-Ming Chiang¹⁵, Christopher T. M. Clack¹⁶, Armond Cohen¹⁷, Stephen Doig¹⁸, Jae Edmonds¹⁹, Paul Fennell^{20,21}, Christopher B. Field²², Bryan Hannegan²³, Bri-Mathias Hodge^{6,24,25}, Martin I. Hoffert²⁶, Eric Ingersoll²⁷, Paulina Jaramillo⁸, Klaus S. Lackner²⁸, Katharine J. Mach²⁹, Michael Mastrandrea⁴, Joan Ogden³⁰, Per F. Peterson³¹, Daniel L. Sanchez³², Daniel Sperling³³, Joseph Stagner³⁴, Jessika E. Trancik^{35,36}, Chi-Jen Yang³⁷, Ken Caldeira^{32*}

Davis et al., Science 360, eaas9793 (2018) 29 June 2018

Hydrogen Economy as a Business

Actual and allowable hydrogen production costs for different end-uses

Big Questions to Solve in Energy Conversion Systems

- > Integrated approach is needed
- Complex scale-coupled transport and reaction kinetics problems

UCI

In collaboration with: Prof. Jack Brouwer, Director of Irvine Clean Energy Institute Prof. Iryna Zenyuk, Director of National Fuel Cell Research Center and Prof. Vojislav Stamenkovic, Director of Horiba Institute for Mobility and Connectivity NFCRC

Electrocatalysts Materials Development Programs

Plamen Atanassov's Group at UCI

Materials for energy conversion projects address electrocatalyst needs of fuel cells and electrolyzers functioning in both alkaline and acid electrolyte.

Electrocatalysts Design at Hierarchy of Scales

Catalysts Design Platform: Carbonaceous Materials Pyrolysis How much we know... how much we can control?

The "lava state":

- > kinetics of solid-state reactions
- release of gaseous products/CVD
- > quenching and kinetically stabilized moieties

Carbonaceous materials:

- defects and defects engineering
- morphological changes
- energy and entropy of defects formation

Atomoically dispersed materials:

- List of transition metals in atomically dispersed (liganded) state
- Possibility to introduce multiple metallic sites on one matrix
- Fechnology to decorate the materials with secondary nano-particles

Hard Templated Materials Synthesis:

Sacrificial Support Method (SSM) – we know how to do it, because we have invented quite a bit of it ③

Template (Sacrificial Support):

- > mono-dispersed silica
- mix of mono-dispersed silica particles
- structured silica or other oxide

Integration:

- \succ wet impregnation
- > dry impregnation
- Mechanochemical a.k.a. "ball-milling"

Pyrolysis:

- controlled atmosphere, temperature
- ramping, duration time, quenching
- > spray pyrolysis, flame pyrolysis, etc.

Precursor:

- metal salts for metals and ceramics
- > organic molecules for carbons
- less-defined "stuff" ©

Release:

- leaching the sacrificial support
- using acid or base
- post-processing or re-pyrolysis

First & only commercially available PGM-free catalyst product

PGM-free M-N-C Catalysts by Pajarito Powder LLC

Technology transfer success story – since 2012

- NPC-2000 PGM-free cathode catalyst
 - > Demonstrated 1.0 kg and beyond
 - Customizable formulations
 - Precious-Metal-Free-CatalystsTM, VariporeTM technology
- PHC-3000 Catalyst support for low-PGM catalysts
 - High corrosion resistance & dispersion of Pt

Engineered Catalysts SupportsTM

US Patent 9,728,788 August 8, 2017 US Patent 9,673,456 June 6, 2017 US Patent 9,634,331, April 25, 2017 US Patent 9,570,761, February 14, 2017 US Patent 9,515,323, December 6, 2016 US Patent 9,425,464, August 23, 2016 US Patent 8,252,711, August 28, 2012

US Patent 7,678,728 March 16, 2010 US Patent 8,252,711, August 28, 2009 PCT/US15/30890 May 14, 2015 ... and more!

First catalyst product launched February 2014 – 10+ years ago!

	United States Patent Olson et al.	(10) Patent No.: US 7,678,728 (45) Date of Patent: Mar. 16,	8 B2 2010
-	SELF SUPPORTING STRUCTURALLY ENGINEERED NON-PLATINUM ELECTROCATALYST FOR OXYGEN REDUCTION IN FUEL CELLS	United States Patent Serov et al.	(10) Patent No.: US 9,728,788 B2 (45) Date of Patent: Aug. 8, 2017
	Inventors: Tim Olson, Albuquerque, NM (US); Plamen Atanassov, Albuquerque, NM	MECHANOCHEMICAL SYNTHESIS FOR PREPARATION OF NON-PGM ELECTROCATALYSTS Applicants: Alexey Serov, Albuquerque, NM (US);	B01J 37/08 (2006.01) B01J 23/745 (2006.01) (52) U.S. Cl. CPC H01M 4/8605 (2013.01); B01J 23/745 (2013.01); B01J 37/08 (2013.01); H01M
Alexey Serov	United States Patent Serov et al.	Understand Plamen B Atanassov, Santa Fe, NM (10) Patent No.: US 9,515,323 B (45) Date of Patent: Dec. 6, 2016	4/8652 (2013.01); H01M 4/9083 (2013.01); 4/8652 (2013.01); H01M 4/9083 (2013.01);
National Laborat	CATHODE CATALYSTS FOR FUEL CELLS Applicant: STC.UNM, Albuquerque, NM (US) Inventors: Alexey Serov, Albuquerque, NM (US); Barr Halevi, Albuquerque, NM (US); Kateryna Artyushkova, Albuquerque, NM (US); Plamen B Atanassov, Santa Fe, NM (US)	B01J 37/08 (2006.01) B01J 23/70 (2006.01) H01M 8/02 (2016.01) H01M 8/02 (2016.01) H01M 4/86 (2006.01) H01M 4/86 (2006.01) H01M 4/86 (2006.01) G2006.01 H01M 4/86 LOC (2013.01); B01J 23/7 (2013.01); B01J 37/08 (2013.01); H01J (2013.01); B01J 23/7	

Graphene Nitride!

Graphene and Fe-N-C Catalysts

Nitrogen-containing and transition metal moieties

Understanding the active sites as defect structures in graphene sheet

UCI

Graphitic Domain

Y. Huang, Y. Chen, M. Xu, T. Asset, P. Tieu, A. Gili, D.S. Kulkarni, V. de Andrade, F. De Carlo, H.S. Barnard, A. Doran, D. Parkinson, X. Pan, P. Atanassov and I.V. Zenyuk, Catalysts by Pyrolysis: Direct Observation of Chemical and Morphological Transformation Leading to Transition Metal-Nitrogen-Carbon Catalysts, Materials Today, 47 (2021) 53-68

Y. Chen, Y. Huang, M. Xu, T. Asset, X. Yan, K. Artyushkova, M. Kodali, E. Murphy, A. Ly, X. Pan, I.V. Zenyuk and P. Atanassov, Catalysts by pyrolysis: Direct observation of transformations during re-pyrolysis of transition metal-nitrogen-carbon materials leading to state-of-the-art platinum group metal-free electrocatalyst, *Materials Today*, 53 (2022) 58-70

STEM micrographs @ melting stage in situ STEM under ultra-high vacuum

A. Serov, A.D. Shum, X. Xiao, K. Artyushkova, I.V. Zenyuk and P. Atanassov, Platinum Group Metal-free Catalyst Design and Electrode Architecture: Insights from Chemical Composition and Morphology on Membrane Electrode Assembly Structure and Function, Appl. Catalysis B, 237 (2018) 1139-1147

S.J. Normile, D. Sabarirajan, O. Calzada, V. De Andrade, X. Xiao, P. Mandal, D.Y. Parkinson, A. Serov, P. Atanassov and I.V. Zenyuk, Direct Observations of Liquid Water Formation at Nano- and Micro-scale in Platinum Group Metal-free Electrodes by Operando X-ray Computed Tomography, Materials Today – Energy, 9 (2018) 187-197

UCI

J. Liu, M.R. Talarposhti, T. Asset, D.C. Sabarirajan, D. Parkinson, P. Atanassov and I.V. Zenyuk, Understanding the Role of Interfaces for Water Management in PGM-free Electrodes in PEFC, ACS Applied Energy Materials, 2 (2019) 53542-3553

Porosity / PSD in Fe-N-C catalysts is critically important for MEA success

Effects of Catalysts Morphology on MEA Performace

- □ Fe-N-C PGM-free catalysts derived from different precursor/synthesis methods are distinctly different materials
- □ Hierarchical porosity is displayed across different classes of materials and result in distinctly different catalysts' behavior specifically in MEA.
- Successful MEA optimization is a task "within the sub-class

UCI

- Achieving superior performance with such distinctly different Fe-N-C PGM-free catalysts is often associated with water management.
- □ This suggests Eley-Rideal-like microkinetic mechanism of ORR in MEA.

Aluminum-air and Zn-air Batteries

R. Buckingham, T. Asset and P. Atanassov, New Generation of Aluminum-Air Batteries: Critical Advances in Alloys, Electrolytes and Design, Journal of Power Sources, (2021), DOI: 10.1016/j.jpowsour.2021.229762

Broad Spectrum of M-N-C Materials

Structure of Atomically Dispersed M-N-C Materials

Pore size distribution

XPS- nitrogen speciation

Pore Diameter (nm)

10

6 Ż

4 5 6 7

100

3

Chemical Structure of M-N-C Materials in the "Library"

E. Murphy, Y. Liu, I. Matanovic, Y. Huang, A. Ly, S. Guo, W. Zang, X. Yan, A. Martini, J. Timoshenko, B. Roldan Cuenya, I.V. Zenyuk, X. Pan, E.D. Spoerke, and P. Atanassov, Elucidating Electrochemical Nitrate and Nitrite Reduction over Atomically Dispersed Transition Metal Sites, Nature Communications, (2023) DOI: 10.1038/s41467-023-40174-4

Surface Composition of M-N-C Materials in the "Library"

Rich surface chemistry of M-N-C by SSM allow targeting multiple reactions: CO₂RR and beyond

UCI E. N E. D Nat

E. Murphy, Y. Liu, I. Matanovic, Y. Huang, A. Ly, S. Guo, W. Zang, X. Yan, A. Martini, J. Timoshenko, B. Roldan Cuenya, I.V. Zenyuk, X. Pan, E.D. Spoerke, and P. Atanassov, Elucidating Electrochemical Nitrate and Nitrite Reduction over Atomically Dispersed Transition Metal Sites, Nature Communications, (2023) DOI: 10.1038/s41467-023-40174-4

Electrocatalytic Coupling NO₃-RR and CO₂RR

NO₃⁻ Reduction to Ammonia on M-N-C Materials

E. Murphy, Y. Liu , I. Matanovic, S. Guo, P. Tieu, Y. Huang, A. Ly, I. Zenyuk, X. Pan, E.D. Spoerke, and P. Atanassov, Nature-Inspired Electrochemical Nitrate Reduction to Ammonia via a Cascade Mechanism over an Atomically Dispersed Bi-Metallic Fe and Mo Based Catalyst, ACS Catalysis, 12 (2022) 6651-6662

NO₃⁻ Reduction to Ammonia on M-N-C Materials

E. Murphy, Y. Liu, I. Matanovic, Y. Huang, A. Ly, S. Guo, W. Zang, X. Yan, A. Martini, J. Timoshenko, B. Roldan Cuenya, I.V. Zenyuk, X. Pan, E.D. Spoerke, and P. Atanassov, Elucidating Electrochemical Nitrate and Nitrite Reduction over Atomically Dispersed Transition Metal Sites, Nature Communications, (2023) DOI: 10.1038/s41467-023-40174-4

Birdja, et al. Nature Energy, 4, 2019, 732–745, DOI: 10.1038/s41560-019-0450-y

CO₂RR on M-N-C Electrocatalysts: Activity & Selectivity

UC

T. Asset, S.T. Garcia, S. Herrera, N. Andersen, Y. Chen, E.J. Peterson, I. Matanovic, K. Artyushkova, J. Lee, S.D. Minteer, S. Dai, X. Pan, K. Chavan, S. Calabrese Barton and P. Atanassov, Investigating the Nature of Active Sites for the CO₂ Reduction Reaction on Carbon-based Electrocatalysts, ACS Catalysis, 9 (2019) 7668

Properties of M-N-C Electrocatalysts: Surface Chemistry

UCI

	N at. %	N Pyridinic (%)	N₄N _x C _y (%)
Cr-N-C	4.0	13.9	17.6
Mn-N-C	4.9	19.0	21.8
Fe-N-C	4.3	24.3	14.5
Co-N-C	4.2	18.2	20.3
Ni-N-C	4.9	10.4	28.7
Cu -N-C	5.0	22.6	12.6
Zn -N-C	4.5	24.7	13.5
Me-free N-C	4.4		0.0

L. Delafontaine, T. Asset and P. Atanassov, Metal-Nitrogen-Carbon Electrocatalysts for CO₂ Reduction Towards Syngas Generation, ChemSusChem, 13 (2020) 1688-1698

M-N-C CO2RR Catalysts for Syngas Generation

L. Delafontaine, E. Murphy, S. Guo, T. Asset, Y. Liu, X. Pan and P. Atanassov, Synergistic Electrocatalytic Syngas Production from Carbon Dioxide by Bi-metallic Atomically Dispersed Catalysts, *ChemSusChem*, 2022, in press

Laurent

Delafontaine

M-N-C Catalysts for CO₂RR: "One-Pot Synthesis"

L. Delafontaine, A. Cosenza, E. Murphy, Y. Liu, J. Chen, B. Sun and P. Atanassov, Metal-Nitrogen-Carbon Catalysts by Dynamic Template Removal for Highly Efficient and Selective Electroreduction of CO₂, ACS Applied Energy Materials, 6 (2023) 678-691

Palladium Hydride for Electrocatalytic Synthesis of Formate

Shengyuan

Guo

S. Guo, Y. Liu, E. Murphy, A. Ly, M. Xu, I. Matanovic, X. Pan and P. Atanassov, Robust Palladium Hydride Catalyst for Electrocatalytic Formate Formation with High CO Tolerance, Applied Catalysis B – Environmental, 316 (2022) 121659

Electroreduction of CO towards Acetate and 1-Propanol

S. Guo, Y. Liu, Y. Huang, H. Wang, E. Murphy, L. Delafontaine, J. Chen, I. Zenyuk and P. Atanassov,

Promoting Electrolysis of Carbon Monoxide towards Acetate and 1-Oropanol in Flow Electrolyzer. ACS Energy Letters, 8 (2023) 935-942

CO2 Electrolysis towards Acetate and 1-propanol

Fe-N-C H_2 OH- / H2O Yield Rate (nmol s⁻¹ cm⁻²) 0 0 0 0 0 00 00 0 00 00 CO CO CO Towards Anode CO Membrane Cathode 2e-CO CH₃COO--0.5 -0.7 -0.9 -1.1 -0.3 Potential vs. RHE (V) Cu NP

- Gas diffusion electrode enhances the gas transfer to catalysts
- CO improves the formation of C-C bond, while prevents carbonate generation
- CO can be produced from CO₂ reduction with high selective catalysts such as Fe-N-C

CO₂ Electrocatalysis and Biocatalysts: Products Valorization

Electroreduction to Ammonia and Urea

Leverett, J. et al., Adv. Energy Mater. 12 (2022) DOI: 10.1002/aenm.202201500.

Zhang, X. et al., Nat. Commun. 13 (2022)1–9 DOI: 10.1038/s41467-022-33066-6

FeNi-N-C

Mono-metallic multi-adsorption/cascade

O3

 $CO(NH_2)_2$

Independent bi-metallic cascade

Diatomic catalyst with simultaneous activation

E. Murphy, Y. Liu, Yuanchao; B. Sun, Y.H. Chen, S. Guo and P. Atanassov, Atomically Dispersed Metal-Nitrogen-Carbon Catalysts for Electrochemical Nitrogen Transformations to Ammonia and Beyond, ACS Catalysis, 14 (2024) 9797-9781 DOI: 10.1021/acscatal.4c02717

Co-reduction of CO₂ and NO₃⁻ to Urea on M-N-C Materials

Yu-Han Chen UCI

- Fe-Mo-N-C shows the best selectivity towards urea production amongst the library.
- Fe-N_x and Mo-N_x shows synergy of NO₃RR activation and hydrogenation of *NO₂⁻.

Advanced Nanostructured Pt Catalysts for FC Durability

Advanced Nanostructured Pt Catalysts for FC Durability

A. Ly, T. Asset, E. Murphy, K. Khedekar, Y. Huang, L. Xing, M. Xu, H. Wang, R. Chattot, X. Pan, I. Zenyuk and P. Atanassov, Design of Platinum Nanoflowers Catalysts Positive Exhibiting Near-ideal Local Coordination in a Complex Shape, *Electrochimica Acta* (2023) DOI: 10.1016/j.electacta.2023.143282

UC

Pt/Conductive Oxides Library and Performance

C. He, A. Ells, S. Sankarasubramanian, J. Parrondo, C. Gumeci, M. Kodali, I. Matanovic, A.K. Yadav, K. Bhattacharyya, N. Dale, P. Atanassov and V.K. Ramani, Self-anchored Platinum Decorated on Antimony-doped-Tin Oxide is a Durable Oxygen Reduction Electrocatalyst, ACS Catalysis, 11 (2021) 7006-7017

Pt/ Ru-TiO₂

Morphological Variability of Novel Carbon Supports

UCI

M. Rezaei Talarposhti, T. Asset, S. T. Garcia, Y. Chen, S. Herrera, S. Dai, E. J. Peterson, K. Artyushkova, I. Zenyuk and P. Atanassov, Kinetic Isotope Effect as a Tool To Investigate the Oxygen Reduction Reaction on Pt-based Electrocatalysts – Part II: Effect of Platinum Dispersion, ChemPhysChem 2020, 21, 1331.

Advanced Carbon Catalysts' Supports

UC

M. Fitzgerald, H. Wang, A. Ly, J. Foster, M. Sorrells, T. Asset, P. Atanassov, and S. Pylypenko, Probing Catalyst-Support Interactions: Effect of Nitrogen Defects on Pt Nanoparticle Dispersion and Stability Through Electron Microscopy Paired with Machine Learning Image Processing, ACS Applied Nano Materials, 6 (2023) 5313-5324

M-N-C Materials as Designer Supports for the PGM Catalysts

A. Ly, E. Murphy, H. Wang, Y. Huang, G. Ferro, S, Guo, T. Asset, Y. Liu, I. Zenyuk, P. Atanassov, Electrochemical Trends of a Hybrid Platinum and Metal-Nitrogen-Carbon Catalyst Library for the Oxygen Reduction Reaction, EES – Catalysis, 2 (2024) 624 DOI: 10.1039/d3ey00235g

Designer Platinum Catalyst/Conductive Carbon Supports Pt/FCX®A IN and Pt/FCX®B IN have very similar physical characteristics

Optimizing Catalysts Structure for Comparability

Optimized 20% wt. and 40% wt. Pt/FCX®B IN and Pt/FCX®B OUT with close/identical Pt crystallinity

XPS Method of Evaluation IrO_x Catalysts via O1s SF-Structure

Edge of the IrO₂ crystal

0.0

Camille Roiron

Model can be applied for both amorphous and crystalline IrO_{x} Designation of the species by their assumed binding with Ir

Surface defectivity of the iridium oxide does not translate directly into electrochemical parameter.

µ3-O

529.8

Different composition depending if we look at extreme surface, sub-surface or bulk

C. Roiron, C. Wang, I.V. Zenyuk and P. Atanassov, Oxygen 1s X-ray Photoelectron Spectra of Amorphous and Crystalline Iridium Oxides as a Key Descriptor of catalyst surface, J. Physical Chemistry Letters, (2024) DOI: 10.1021/acs.jpclett.4c02616

IrO_x/TiO₂ Electrocatalysts for Oxygen Evolution Reaction

IrOx supported on commercially available anatase TiO₂

Shabnam

S. Zargarian, C. Roiron, G. Ferro and P. Atanassov, Iridium Oxide Network on Non-Conductive TiO2 Support as a Catalyst for Oxygen Evolution, ChemElectroChem, (2025) DOI: 10.1002/celc.202400625

PGM-free Electrocatalysts for Oxygen Evolution Reaction

BESSY II Light Source

Co₃O₄

MnCo₂O

400

Cycle Number

600

200

Cu_{0 75}Co_{2,25}O₄

Cu₀₅Mn₀₅Co₂O

Electrocatalysts' Role in Decarbonization Technologies

Outlook on the Role of Electrocatalysis for Decarbonization

New Materials Focus:

UCI

- Critical need to overcome the dependance on PGM metals at least by thrifting for the next decade
- > Materials design at hierarchical scale with an emphasis on control of the interfaces
- Addressing materials stability under operating conditions and its effect on durability of devices
- > Materials synthesis strategies that provide scaleup and save costs while proving ultimate control
- Integration technologies for device fabrication with high thruput and market orientation

Device Focus:

- > Nish markets are growing and overlapping
- Critical need for medium duration storage
- > Dynamic operation is highly desirable
- > Minimal startup/shut down losses

System Focus:

- Integration with batteries into hybrid systems
- Power electronics solutions for durability
- Modular approach for flexibility
- Deployment at scale

UCI

DOD-ARO MURI to University of Utah : W911NF1410263 - Shelley Minteer, PI Bio-inspired Design of Adaptive Catalysts Cascades, 2014-2020

Glycerol to CO₂ Cascade Oxidation in a Singular Device:

paper microfluidics-based spectro-electrochemical platform

S. Abdellaoui, M. Seow Chavez, I. Matanović, A.R. Stephens, P. Atanassov and S.D. Minteer, Hybrid Molecular/Enzymatic Catalytic Cascade for Complete Electrooxidation of Glycerol Using a Promiscuous NAD-dependent Formate Dehydrogenase from Candida boidinii, Chemical Communications, 53 (2017) 5368-5371

the OxDC layer was sandwiched between two plastic films to prevent the OxDC from getting dry and denaturing the size of the platform was small (7.5 cm x 8 cm) to fit under the Raman microscope comfortably SERS detection zones were located in positions where they are all accessible to the Raman laser

N. Andersen, K. Artyushkova, I. Matanović, D. Hickey, S. Minteer and P. Atanassov, Spectro-Electrochemical Microfluidic Platform for Monitoring Multi-step Cascade Reactions, *ChemElectroChem*, 6 (2019) 246-251

N.I. Andersen, M. Seow Chavez, K. Artyushkova, I. Matanović, D.P. Hickey, S. Abdelloui, S.D. Minteer, and P. Atanassov, Modular Microfluidic Paper-based Devices for Electrocatalysis, ChemElectroChem, 6 (2019) 2448–2455

DOD-ARO MURI to University of Utah : W911NF1410263 - Shelley Minteer, PI Bio-inspired Design of Adaptive Catalysts Cascades, 2014-2020

Complex Enzyme/Nanomaterials Adducts :

multiple enzymes in channeling formation on DNA-CNT scaffolds

G. R. Szilvay, S. Brocato, D. Ivnitski, C. Li, P. DeLa Iglesia, C. Lau, E. Chi, M. Werner-Washburne, S. Banta, and P. Atanassov, Engineering of a Redox Protein for DNA-Directed Assembly, Chem. Comm., 47 (2011), 7464 - 7466

50 – 80 nm long DNA scaffold

L. Xia, K. Nguyen, Y. Holade, H. Han, K. Dooley, P. Atanassov, S. Banta and S. Minteer, Improving the Performance of Methanol Biofuel Cells Utilizing an Enzyme Cascade Bioanode with DNA Bridged Substrate Channeling, ACS Energy Letters, 2 (2017) 1435-1438

DOD-ARO MURI to University of Utah : W911NF1410263 - Shelley Minteer, PI Bio-inspired Design of Adaptive Catalysts Cascades, 2014-2020

K. Garcia, S. Babanova, W. Sheffler, M. Hans, D. Baker, P. Atanassov and S. Banta, Designed Protein Aggregates Entrapping Carbon Nanotubes for Bioelectrochemical Oxygen Reduction, Biotechnology & Bioengineering, 113 (2016) 2321

Global Human Development Index and Power/Energy Use

Challenges:

- Creating a National and reginal sustainable policy of development and growth
- Building National energy independence strategy
- Achieving resilience of power delivery with respect to geopolitical and environmental catastrophic events

