Significant results (1979 - 2018 ) (Raji Heyrovska, Ph.
D.)
(See list of publications in
http://www.jh-inst.cas.cz/~rheyrovs, for work before 1979.
The
ref.
numbers below are as in:
http://www.jh-inst.cas.cz/~rheyrovs/publs.htm#L4 )
Contents:
I. Partial dissociation and
hydration of Strong electrolytes at all concentrations found
to be correct (Arrhenius, Van't Hoff
and Ostwald were right; see
publications:1979-,
collected papers in [182] and [196-198].)
II. Distances of closest approach of ions (have been evaluated using degrees of dissociation in Bjerrum's equation; see publications: 1999-, [72, 81, 83])..
III. "Anomalous" Stokes ionic radii explained (("anomaly" disappears on using "local" instead of "bulk' viscosity in the Stokes-Einstein Eqn.; see publications: 1989-, [51, 53].
IV. "Wet-and-measure" polarography (uses small amounts of solution held by surface tension between a silver ring and the glass capillary with Hg-drop; see publications: 1992-, [56-58]).
V. Current spike polarography for films and surfaces (the tip of the mercury drop from the glass capillary contacts the solution at the end of its drop life; see publication: 1993-, [62, 63]).
VI. Rest mass based neutron numbers, N(rm) (Use of rest masses shows that for atomic masses A > 108, N(rm) = N -1 and for A > 254, N(rm) = N - 2; see publications: 1992-, [59, 77, 78, 143, 147, 195]).
VII. Interpretation of Michelson & Morley's observations (using Galilean kinematics, without invoking the contraction of distance and dilation of time hypotheses demanded by the special theory of relativity) (First author: Albert Heyrovsky; see publication: 1994-, [64]).
VIII. Mass defect due to neutrinos evaluated from nuclear mass defects (based on the fact that fusion of a proton and a neutron to form a deuteron releases a neutrino, antineutrino pair and causes a definite mass defect attributable to neutrinos. A simple equation is provided; see publications: 1998-, [76, 78, 143, 195].
IX. A new theory of the energy of the hydrogen atom (shows that the Bohr radius is divided into two Golden sections pertaining to the electron and proton and that the differenec in the two terms in the Rydberg equation in spectrocopy arises due to the electrostatic energy in the ground state. This further leads to the assignment of Golden ratio based ionic radii which explain quantitatively the interionic distances in all alkali halides and also to the additivity of atomic/ionic radii in bond lengths in general; see publications: 2004-, collected papers in [184, 190]).
X. The absolute potentials of the standard hydrogen electrode and hence of redox couples of elements of the Periodic Table have been obtained, (unambigously by a new linear correlation of the gaseous ionization potentials with standard aquoeus redox potentials; see publications: 2009-, collected papers in [183]).
XI. Other significant results (- 2018)
XII. Women in Science (2002 - 2011)
------------------------------------------------------------------------------------------------------------------------------
I. Partial dissociation of Strong electrolytes (Arrhenius, Van't Hoff and Ostwald were right!)
Introduction: I got acquainted with the properties of strong electrolytes when I was working for my Ph. D. degree. Ever since, I was wondering why the theory of electrolytes was so complicated. It was based on extensions to higher concentrations of the Debye-Huckel (1923) equations, which were valid only for very dilute solutions, and there was no unified interpretation of the thermodynamic properties over the whole concentration range (e.g., see: R. A. Robinson and R. H. Stokes, Electrolyte Solutions, Butterworths, London 1955, 1970).
During the years 1979 - 1984, by a systematic analysis of the existing data on the thermodynamic properties of electrolytes, it became gradually clear to me that the assumption of complete dissociation of strong electrolytes (NaCl -----> Na+ + Cl- ) that prevailed from 1923 onwards had to be abandoned in favor of the earlier van't Hoff's factor for non-ideality and its interpretation by Arrhenius through the idea of partial dissociation (NaCl <===> Na+ + Cl- ). On combining the ideas of partial dissociation and hydration (as Arrhenius himself had suggested) as pointed out by Bousefield (1917), I could show unambiguously in 1984, that the thermodynamic properties of electrolytes could be quantitatively explained using simple equations (a century after Arrhenius wrote his dissertation for the Ph. D. in 1884!).
Subsequently, in
1987 I could explain the solution properties quantitatively
from zero upto a higher concentration of about 3.5m by using
the degrees of dissociation
and hydration numbers obtained from the data on vapor pressure of solutions. It
was published in a detailed form in: R. Heyrovska, Chapter
A full paper on this was accepted with encouraging remarks in: R. Heyrovska, Journal of Electrochemical Society, 143 (1996) 1789. Thus, since solution properties could now be explained quantitatively using concentrations and volumes of ions and ion pairs and of free water, the arbitrary thermodynamic correction factors, evaluated on the assumption of complete dissociation of electrolytes, like "activity and osmotic coefficients" are not anymore necessary.
Since 1996, I
have extended the above work to all the alkali
halides, strong acids, bases and many more strong
electrolytes. After my talk on the subject at
Harvard University, (my host) Prof. J.N. Butler, invited me
to write a short account in his book, (R. Heyrovska in: "Ionic
Equilibrium", Ed. J.N. Butler, (John Wiley and Sons, New
York, 1998), chapter 11, pp. 477- 481), which he
had almost completed. An invited full review of my work is in: R. Heyrovska, Chemicke
Listy, 92 (1998)
In 2003, it was a great honour for me to have been awarded the Invited Plenary Lecturership in the "Svante Arrhenius Symposium" commemorating the award of the Nobel Prize to him in 1903. The text of this Lecture is in my above webpage (http://www.jh-inst.cas.cz/~rheyrovs/text-sa-.htm) and has now been published along with more data in: R. Heyrovska, Electroanalysis, 18 (2006) 351-361.
Further, I have
worked out a concise
equation of state for solutions of electrolytes, based on
hydration and partial dissociation, which incorporates the
thermodynamic laws (see: R. Heyrovska, Special
Issue of ENTROPY, 6 (2004) 128). This was on the
analogous lines of an equation of state that I had developed
earlier for gases (presented at a conference on the Second
Law of Thermodynamics in San Diego, CA, in 2002) in: R. Heyrovska, AIP
Conference Proceedings, 643 (2002) 157.
Therefore,
since now we have the exact
values of the thermodynamic "ionic molality, am" of an ion at any
molality m of the electrolyte, there is "no need for the
activity and osmotic coefficients", which are
evaluated based on the idea of complete electrolytic
dissociation".
II. Distances of closest approach of ions (evaluated using degrees od dissociation in Bjerrum's equation)
Bjerrum thought
that in a strong electrolyte like NaCl in aqueous solutions,
ion pairs are unlikely since the critical distance of
approach for ion pair formation, q ~
(1-a)/c = 2.755 Q(b); Q(b) = f(a)
where Q(b), the
Bjerrum's integral is a function of "a". For NaCl(aq), (1/a)
changes linearly with 1/m and even at
saturation, a < q, the
critical distance.
References: [72, 81,83]; [83]: R. Heyrovska: Journal
of Molecular Liquids, 81 (1999) 83 (Letter) and [81]:
Current Science, 76 (1999) 179 (full paper).
III. "Anomalous" Stokes ionic radii explained (so-called "anomaly" disappears on using "local" instead of "bulk" viscosity in the S-E Eqn)
The Stokes ionic radius, RSi is obtained from the Stokes-Einstein equation (S-E eqn),
Diwo = kT/6phoRSi ... (1)
where ho is the coefficient of viscosity of the pure
solvent (water, w) in the bulk. The "anomalous" values of RSi
are usually associated with ionic hydration. It is shown
here that the "anomaly" is actually due to the
(incorrect) use of the coefficient of viscosity of the
bulk water, ho instead of hwi, that of water adjacent to the ions. The modified Stokes-Einstein
eqn. is thus:
Diwo = kT/6phwi Rwi ... (2)
where RSi = Rwi hwi /ho and Rwi is the radius of a water molecule adjacent to ion i.
References [51, 53]; [51]: R. Heyrovska, Chemical Physics Letters, 163 (1989) 207.
IV. "Wet-and-measure" polarography (uses small amounts of solution sticking by surface tension between a silver ring and the glass capillary)
This new
device shows that the tiny volume of solution that sticks by
surface tension betwen a silver ring and the end of the
glass capillary of the mercury electrode is quite enough for polarogarphy,
since it gives the same polarograms as those with mercury
electrodes (both DME and HME) dipping in bigger volumes of
solution as in conventional polarography.
References: [56-58], [56]: R.
Heyrovska, Journal of Electrochemical Society, 139 (1992)
L50.
V. Current spike polarography for films and surfaces (tip of the mercury drop contacts the solution at the end its of drop life)
This is another
new technique: the mercury drop contacts the surface or film
of the solution in a silver ring electrode at the end of its
drop life and hence a current spike is obtained and
recorded. This is sensitive to oxygen and can be used as an
oxygen sensor, also for measuring the difference between
the surface and bulk potentials (c -potential), for fast electron transfer
processes and for
detecting the polarographic maxima of the 1st and
2nd kinds.
References: [62, 63]; [62]: R. Heyrovska,
Langmuir, 9 (1993) 1962.
VI. "Rest mass based neutron numbers, N(rm)" (exact rest masses show that for A > 108, N(r,m) = N - 1 and for A > 254, N(r,m) = N - 2)
These values of N(rm) are based
on
the exact rest masses of the electron (me =
0.00054858 u), proton (mp = 1.0072765 u) and
neutron (mn = 1.0086649 u). Note that the conventionally
used neutron numbers (N) are based on me
= 0, mp = mn = 1 u and
are approximate. Therefore,
N(rm)
= [A - Z (me+ mp)]/mn ~ N only for atomic
masses A < 108, for A > 108(Ag), N(r,m) = N - 1 and for A
> 254 (Es), N(r,m) = N
- 2.
References: [59, 77, 78, 143, 147, 195];
[59]: R. Heyrovska: Journal of Chemical Education, 69 (1992) 742;
[77]: 216th Meeting of the American Chemical Society,
Boston, Aug. 1998,
short abstract no. 11; [143]: http://precedings.nature.com/documents/4547/version/1 (2010), [195]: http://vixra.org/abs/1711.0405 (abstract); http://vixra.org/pdf/1711.0405v1.pdf (full text)
VII. Interpretation of Michelson & Morley's observations ("without invoking the contraction of distance hypothesis demanded by the special theory of relativity") (First author: A. Heyrovsky)
As the
interpretations usually involve the "contraction
of distance" and "dilation of time" hypotheses (as per the
special theory of relativity), which have NOT been directly experimentally
verified, M&M's observations are explained
here by a vector addition of the velocity of the Earth
with that of light assuming Galilean kinematics, WITHOUT the
contraction or dilation hypotheses.
Reference:
[64]:
A. Heyrovsky and R. Heyrovska, Physics Essays, 7 (1994)
265.
VIII. "Mass defect due to neutrinos" evaluated from nuclear mass defects (based on the fact that fusion of a proton and a neutron to form a deuteron releases a neutrino, antineutrino pair and causes a definite mass defect attributable to neutrinos)
The idea behind this is that a neutrino, antineutrino pair is released during the synthesis of a deuteron from a neutron and a proton. Therefore, if the neutrinos have mass, the nuclear mass defect, MD = (ZmH+Nmn) - A, where A is the atomic mass of the nuclide X(Z.N) must also contain the mass defect due to neutrinos. Based on this, it is shown here that the mass defect due to neutrinos, MD(n), for any nuclide is a definite fraction of MD:
MD(n)/MD = [Z/(ZmH+Nmn)](mn-mp)2/mn
The values of the "mass defect per nucleon due to neutrinos/antineutrinos", MDPN(n) = MD(n)/(Z+N), (which are in the expected eV range!) have been tabulated for the most abundant nuclide of everyone of the 105 elements.
References: [76]: R. Heyrovska, 216th
Meeting of the American Chemical Society, Boston, Aug.
1998, short abstract no. 9; in book form: Arjun
Consultancy & Publishing Inc., Desktop publisher,
Wayne, NJ (USA), 1998, (full paper), [143]: http://precedings.nature.com/documents/4547/version/1 (2010)
and [195]: http://vixra.org/abs/1711.0405
(abstract); http://vixra.org/pdf/1711.0405v1.pdf
(full text)
IX. A new theory of the energy of the hydrogen atom (shows that the Bohr radius is divided into two Golden sections pertaining to the electron and proton. This leads to the assignment of Golden ratio based ionic radii which explain quantitatively the interionic distances in all alkali halides and further, to the additivity of atomic/ionic radii in bond lengths.
References: [110]:R. Heyrovska, Molecular
Physics, 103 (2005) 877 - 882; [132]: Chapter 12 in:
"Innovations in Chemical Biology", Editor: Bilge Sener,
Springer.com, January 2009; [134]: http://precedings.nature.com/documents/3292/version/1 (2009); [184]: http://vixra.org/abs/1603.0199;
http://vixra.org/pdf/1603.0199v1.pdf;
[190]: http://vixra.org/abs/1709.0066 (abstract); http://vixra.org/pdf/1709.0066v1.pdf (full
text)
X. Absolute potentials of the hydrogen electrode (established for the first time), of aqueous redox couples and of standard reference electrodes (2009-)
The absolute
potential of the standard hydrogen electrode (which
was so far taken arbitrarily as zero) and of redox couples of elements
of the Periodic Table have
been
established unambiguously from a new simple linear
correlation of aqueous standard potentials with gaseous
ionization potentials.
References: [136]: R. Heyrovska,
Electrochemical and Solid -State Letters, 12 (2009) F29-F30; [138]: Electrochem. Soc.
Trans., 25, (2010)
159-163; [140]:
Electroanalysis, 22 (2010)
903, [139]:
Nature Precedings http://precedings.nature.com/documents/4354/version/1 (2010) (Full text in English), https://www.researchgate.net/publication/43179529 DOI: 10.1038/npre.2010.4354.1; [183]: http://www.vixra.org/abs/1603.0168 ; http://www.vixra.org/pdf/1603.0168v1.pdf
XI. Other significant results (1999 - 2018)
(Selected few only. Reference numbers are as in the List of
publications:
http://www.jh-inst.cas.cz/~rheyrovs/publs.htm#L4)
85.
Degrees
of dissociation and hydration numbers of monovalent sulphates
including ammonium sulfate (1999).
See: http://www.electrochem.org/dl/ma/196/pdfs/2041.PDF
and a Table of data in: http://www.jh-inst.cas.cz/~rheyorvs
86,
96. Thermodynamic
significance of transfer
coefficients and E. M. F. of concentration cells
(2000, 2002).
Shows that the transfer coefficient is not merely a kinetic
parameter, but is basically a thermodynamic parameter which
influences the kinetics.
90.
Aqueous redox potentials related to
ionization potentials and electron
affinities of elements by simple linear equations (2000).
Linear relations have been shown for elements in many groups
in the Periodic Table. See http://www.electrochem.org/dl/ma/198/pdfs/0957.PDF
92. An estimation of the ionization potentials of
actinides from a simple dependence of the aqueous
standard potentials on the ionization potentials of elements
including lanthanides (2000/2001).
Using the linear relation shown above in Ref. 90, the ionization potentials for the
actinides (which had not been obtained before due to their
instability) have been estimated: R. Heyrovska, Journal of Alloys and
Compounds 323 - 324 (2001) 614. See also
Ref. 136, 137 & 138 (2009,
2010) for newer estimation..
98. A
The new concise equation of state (with
association/dissociation of molecules) incorporates also
heat capacities, the thermodynamic laws and entropy. The
fundamentals of the 2nd law are discussed: R. Heyrovska, AIP Conference
Proceedings, 643 (2002)
157 - 162
The
new concise equation of state (with ion association and
hydration), analogous to that for gases in Ref. 98, incorportaes also
heat capacities, the thermodynamic laws and entropy:R. Heyrovska, ENTROPY, 6 (2004) 128 -134
106
-110. Hydrogen as an atomic
condenser (2004, 2005).
While working on the ionization potentials, the
author arrived at the conclusion that the ground state Bohr
radius is divided into two Golden sections at the point of
electrical neutrality. The ionizational potential is the
difference of two terms pertaining to the proton and
electron. This
explains why the two oppositely charged particles do not
fall into each other, and shows that the two terms in the Rydberg
equation for spectra arise in the ground state term itself.
The energy of hydrogen can thus be considered as the
electromagnetic energy of the simplest atomic
condenser with the Golden mean capacity. References: R. Heyrovska, http://flux.aps.org/meetings/YR04/DAMOP04/baps/abs/S400132.html
and Molecular Physics, 103 (2005) 877 - 882
110. The Golden ratio (f), ionic and atomic radii and
bond lengths (2005).
Shows that since the Bohr radius has two Golden sections,
interatomic distances (between like atoms) are divided into
two Golden sections, representing meaningful anionic and
cationic radii. The latter account for the full (as in
alkali halides) and partial ionic (like hydrogen halides)
character of some chemical bonds, and show that bond
lengths, in general, are sums of atomic/ionic radii. Tables
of ionic and atomic radii and bond lengths are provided.
Reference: R. Heyrovska, Special Issue of Molecular Physics,
103 (2005) 877 - 882.
For more publications: see full List of publications.
111, 112. Fine-structure
constant, anomalous magnetic moment, relativity
factor, the Golden ratio, and the Bohr radius
(2005)
Shows that the ratio of the difference in g-factors (of the
electron and proton) to their sum, is equal to f-3, and that they
are related to the inverse fine-structure constant (137.036)
and the Golden section (360/f2 = 137.51).
Sommerfeld's relativity correction factor (for the advance
of the perihelion for hydrogen atom), is also explained.
Reference: R. Heyrovska and S. Narayan, http://arxiv.org/ftp/physics/papers/0509/0509207.pdf
(2005)
115. Dependence of ion-water
distances on covalent radii, ionic radii in water and
distances of oxygen and hydrogen of water from ion/water
boundaries
(2006).
The linear dependences give the aqueous ionic radii of many
different elements and lengths of the hydration bonds, which
are all functions of the Golden ratio. The hydrogen bond
with all the halide ions is found to be have a constant
length and is the sum of the f-based cationic radius and covalent radius of
hydrogen (of water).
Reference: R. Heyrovska, Chem. Phys. Letts., 429 (2006) 600 - 605.; doi:10.1016/j.cplett.2006.08.073
117. Dependence of the length of the hydrogen bond on the
covalent and cationic radii of hydrogen, and additivity of bonding
distances.
Reference: R. Heyrovska, Chem. Phys.
Letts., 432 (2006) 3498 - 351; doi:10.1016/j.cplett.2006.10.037
120, 123, 131. Unification of all radii by their linear dependence on Bohr radii
Reference: R. Heyrovska, http://arxiv.org/ftp/arxiv/papers/0708/0708.1108.pdf
; Philippine Journal of
Science, 137 (2): 133-139, December 2008.
149. Balmer and Rydberg equations for
hydrogen spectra revisited: Bohr's ad hoc quantization of angular momentum was
not necessary
http://arxiv.org/ftp/arxiv/papers/1105/1105.4366.pdf
(2011)
160. Atomic
and Ionic Radii of Elements and Bohr Radii from Ionization
Potentials are Linked Through the Golden Ratio. http://www.ijsciences.com/pub/pdf/V2-201303-19.pdf
International Journal of Sciences (ISSN 2305-3925) Volume 2,
82-92, Issue Mar 2013, Research Article.
162.
Bond Lengths, Bond Angles and
Bohr Radii from Ionization Potentials Related via the
Golden Ratio for H2+,
O2, O3,
H2O, SO2,
NO2 and CO2
International
Journal of Sciences (ISSN 2305-3925) Volume 2, 1-4,
Issue Apr- 2013, Research Article.
164 –
200. (Many more).
XII. Women in Science (see full
articles in List of Publications: http://www.jh-inst.cas.cz/~rheyrovs/publs.htm#L4)
References 1 - 15 (in pink): Publications (2002 - 2011) on suggestions for improving the
academic status/situation of Women in Science.
=========================================================================